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Abstract. This paper aim is consideration of elementary (calculus-free) way
which only the double-angle formulas and the inequalities sinx < x < tanx give
opportunity to obtain well known polynomial minorants and majorants for
sinx; cosx and tanx:

1. Introduction

We o¤er an elementary (calculus-free) proof of the inequalities

x� x
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6
< sinx < x� x
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; (1)

1� x
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24
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x+
x3

3
< tanx; (3)

when x 2
�
0;
�

2

�
: All we need are the double-angle formulas

sin 2x = 2 sinx cosx;
cos 2x = 1� 2 sin2 x;
tan 2x =

2 tanx

1� tan2 x
;

all presented in standard courses of trigonometry, and the double inequality
sinx < x < tanx for x 2 (0; ��2) ; which has a visual geometric proof.

The left side of (2) can be improved to become

1� x
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� x6

720
< cosx (4)

and we prove this as well. In each case the polynomials consist of the initial
terms of Maclaurin series for the sine, cosine, and tangent functions.
When we say "calculus-free proof" we mean that proof should be free not only

from derivative and series but also free from limits, using instead "passing to limit",
the simple and transparent reasoning in form of following

Proposition 1. Let P be set of positive real numbers such that for any
positive real " there is p 2 P that p < " and let inequality f (x) < p holds for
any x 2 Dom (f) and any p 2 P:Then for any x 2 Dom (f) holds inequality
f (x) � 0:
Proof. Indeed, supposition of existence x0 2 Dom (f) such that f (x0) > 0 immediately
leads to contradiction because then f (x0) < p for any p 2 P and at the same time
for " = f (x0) there is p 2 P that p < f (x0) : �

� Proof of x� x3�6 < sinx; x 2 (0; ��2)
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For x 2 (0; ��2) the inequality x < tanx yields x cosx < sinx; so for any x 2
(0; ��2) we have

x cosx < sinx < x (5)
:
Using (5) we can �nd a third-degree polynomial that is a lower bound for

sinx: Indeed, since cosx = 1� 2 sin2 (x�2) and sin (x�2) < x�2

we have cosx > 1 � 2
�x
2

�2
= 1 � x2

2
( which is the left side of (2)) and,

therefore,

sinx > x cosx > x

�
1� x

2

2

�
= x� x

3

2
:

Suppose now that for some positive a the inequality sinx � x � ax3 holds for
every x 2 (0; ��2) :( We have just shown that this holds when a = 1=2).
Then, since cosx > 1� x2�2; we obtain
sinx = 2 sin

x

2
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x
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=
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ax5 > x�

�
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�
x3

whenever x 2 (0; �) and, therefore, for any x 2 (0; ��2) holds inequality

sinx > x�
�
a

4
+
1

8

�
x3 () x�sinx <

�
a

4
+
1

8

�
x3

So, we can see that if for some a > 0 inequality x � sinx < ax3 holds for any

x 2 (0; ��2) then inequality x� sinx <
�
a

4
+
1

8

�
x3 holds for any x 2 (0; ��2) as

well.
(Furthermore, even non-strict inequality x � sinx � ax3; x 2 (0; ��2) by pro-

cedure represented above generate strict inequality x � sinx <
�
a

4
+
1

8

�
x3 for

x 2 (0; �)).
Thus, for any term an of the sequence de�ned by an+1 =

an
4
+
1

8
; a1 = 1=2 inequality

r (x) < anx
3 holds for any x 2 (0; ��2) :

Since
1

8
= c� c

4
() c =

1

6
then for any n 2 N we have

an+1 =
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4
+
1

8
() an+1 �

1

6
=
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�
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�
an+1 �

1

6

�
=

4n
�
an �

1

6

�
:

That is 4n
�
an �

1

6

�
= 41

�
a1 �

1

6

�
= 4

�
1

2
� 1
6

�
=
4

3
and, therefore, an =

1

6
+

1

3 � 4n�1 ; n 2 N:

Thus, x � sinx � x3

6
<

x3

3 � 4n�1 <
�3

6 � 4n ; n 2 N: Since
1

4n
<

1

3n
for any n 2

N (can be proved by Math Induction) then x�sinx�x
3

6
<
�3

18n
; n 2 N and applying
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Proposition to f (x) = x�sinx� x
3

6
and P =

�
�3

18n
j n 2 N

�
we obtain inequality

x� sinx� x
3

6
� 0 () x� sinx � x3

6
for any x 2 (0; ��2) :

Since x � sinx � x3

6
yields x � sinx <

�
1

6
� 1
4
+
1

8

�
x3 = x � x3

6
we �nally get

strict inequality x� sinx < x3

6
() x� x

3

6
< sinx for any x 2 (0; ��2) :

� Proof of cosx < 1� x
2

2
+
x4

24
; x 2 (0; ��2) :

Since sinx > x� x
3

6
> 0 (x� x

3

6
=
x

24

�
24� 4x2

�
>
x

24

�
24� �2

�
> 0); we have

cosx = 1� 2 sin2
�x
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�
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= 1� 1

2
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1

24
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1152
x6 <
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2
x2 +

1

24
x4:

� Proof of sinx < x� x
3

3!
+
x5

5!
; x 2 (0; ��2)

Let x 2 (0; ��2) :Since sinx < x and cosx < 1� 1
2
x2 +

1

24
x4 then

sinx = 2 sin
x

2
cos

x

2
< 2 � x

2

 
1� (x�2)

2

2
+
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24

!
= x� x

3

8
+
x5

384
.

So, we have

sinx < x� x
3

8
+
x5

384
; x 2 (0; ��2) : (6)

Suppose now that for some positive a <
1

3!
=
1

6
and positive

b <
1

5!
=

1

120
inequality sinx � x� ax3 + bx5 holds for every x 2 (0; ��2) :

Then

sinx = 2 sin
x

2
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x

2
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=
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�
x5 �

�x
2

�7� 1
12
a+ b

�
1� x

2

48

��
<
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+
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x3 +

�
a
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+
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+
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�
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because for for any x 2 (0; ��2) holds inequality 1
12
a+ b

�
1� x

2

48

�
> 0 :

Thus, the non-strict inequality sinx � x� ax3 + bx5 (which we know to be
true when a = 1=8 and b = 1=384) yields the strict inequality

sinx < x�
�
a

4
+
1

8

�
x3 +

�
a

32
+
b

16
+

1

384

�
x5 (7)

If we write a =
1

6
� p; b = 1

120
� q and denote sinx� x+ x

3

6
� x5

120
via r (x) then

sinx � x� ax3 + bx5 () sinx � x�
�
1

6
� p
�
x3 +

�
1

120
� q
�
x5 ()

sinx� x+ x
3

6
� x5

120
� px3 � qx5 () r (x) � px3 � qx5; where p; q > 0
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and since
a

4
+
1

8
=
1

6
� p
4
;
a

32
+
b

16
+

1

384
=

1

32

�
1

6
� p
�
+
1

16

�
1

120
� q
�
+

1

384
=

1

120
� p

32
� q

16

we obtain (7)() sinx < x�
�
1

6
� p
4

�
x3 +

�
1

120
� p

32
� q

16

�
x5 ()

r (x) <
p

4
x3 �

� p
32
+
q

16

�
x5:

So, we have shown that the inequality r (x) < px3 � qx5 and even
r (x) � px3 � qx5 implies the inequality

r (x) <
p

4
x3 �

� p
32
+
q

16

�
x5:

Due to inequality (6) with a =
1

8
and b =

1

384
the initial value

of p is
1

6
� 1
8
=
1

24
and the initial value of q is

1

120
� 1

384
=

11

1920
:

Let sequences (pn)n�1 and (qn)n�1 be as follows

pn+1 =
pn
4
; qn+1 =

pn
32
+
qn
16
; n 2 N ; p1 =

1

24
; q1 =

11

1920
.

Thus, we can see that for any x 2 (0; ��2) holds inequality
r (x) < pnx

3 � qnx5 < pnx3 (because qnx5 > 0 for any n 2 N)
Noting that pn =

1

24
� 1

4n�1
=

1

3 � 22n+1 ; n 2 N we obtain inequality

r (x) < pnx
3 =

x3

3 � 22n+1 ; n 2 N:

Since
1

3 � 22n+1 can be arbitrary small with increasing n

then
x3

3 � 22n+1 <
(�=2)

3

6 � 4n can be arbitrary small with increasing n

as well then, applying Proposition to f (x) = r (x) we obtain
inequality r (x) � 0; x 2 (0; ��2) which equivalent to inequality
sinx � x� 1

6
x3 +

1

120
x5; x 2 (0; ��2) and, since

sinx � x� 1
6
x3 +

1

120
x5 yields

sinx < x�
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x5

we �nally get strict inequality sinx < x� 1
6
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x5:

� Proof of 1� x
2

2
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< cosx; x 2 (0; ��2) :

As a consequence of the above inequalities for sinx we have
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because 2
1

4 � 5

�x
2

�2
< 2 for x 2 (0; ��2) :

� Proof of x+ x3�3 < tanx; x 2 (0; ��2)
Let x 2 (0; ��2) :Since tanx > x we obtain

tanx =
2 tan

�x
2

�
1� tan2

�x
2

� > 2 � x
2

1�
�x
2

�2 > x�1 + x24
�
= x+

x3

4
:

As above, suppose that for some a > 0 inequality tanx � x+ ax3 holds for any
x 2 (0; ��2) :Then

tanx =
2 tan

�x
2

�
1� tan2

�x
2

� > 2

�
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�
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x
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+
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8
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�
x

2
+
ax3

8
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�
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4

��
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4
+
1
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Thus, the non strict inequality tanx � x+ ax3 (which we know to be true when

a = 1=4 ) yields the strict inequality tanx > x+
�
a

4
+
1

4

�
x3:

If we write a =
1

3
�p;then a

4
+
1

4
=
1

3
� p
4
: So we have shown that the inequality

r (x) < px3 implies the inequality r (x) <
px3

4
; where r (x) = x+

x3

3
� tanx:

We know that the inequality holds for p = 1�12 because tanx > x+
x3

4
()

r (x) <
x3

12
:

So, inequality r (x) < px3 holds for p =
1

48
;
1

192
; :::;

1

12 � 4n ; ::: in fact for arbi-
trary small positive p: Therefore, applying Proposition to the function f (x) =
r (x) we obtain

r (x) � 0 () x+
x3

3
� tanx for x 2 (0; ��2) and since tanx � x+ 1

3
x3 yields

tanx > x +

�
1

3
� 1
4
+
1

4

�
x3 = x +

1

3
x3 we �nally get strict inequality tanx >

x+
1

3
x3:
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